A fully-funded PhD studentship: UWE Bristol Computer Science Research Centre and Airbus

An opportunity to apply for a fully-funded three year PhD in the area of machine learning and data analytics within the Computer Science Research Centre. The studentship will be jointly funded by UWE Bristol and Airbus. Ref: 1920-OCT-FET07.

Studentship start date: 1 January 2020.

Closing date for applications: 1 November 2019.

Interview date: TBD.

About the studentship

Computer Science Research Centre (CSRC) of UWE Bristol, in partnership with Airbus, are pleased to offer a PhD studentship.

In the current era, new aircraft are being constructed with a variety of new materials to improve efficiency but, perhaps more importantly, they are also being fitted with a range of data collection capabilities and measurement tools to provide greater feedback. The possibility for organisations and departments to maintain, repair or replace components before they fail promises to improve safety, reliability, and reduce costs. 

Due the wealth of data in the aerospace industry, there is a drive for increased automation, particularly to organise and analyse this data to help in the decision-making. Therefore, there is a growing need to build smart theoretical and practical solutions, which can automate most (if not all) of the data analytics in order to quickly and intelligently predict the need of repair or replace aircraft systems components. 

This PhD research will aim to investigate intelligent methods to automatically identify predictive and preventive maintenance trends using various real time and historical datasets collected from aircraft systems. This will be achieved by the application of artificial intelligence (AI), knowledge modelling and big data analytics techniques. It is expected that this will be achieved by research conducted in terms of automation of:

  • identification of relevant data sources
  • development of a domain knowledgebase of identified data sources and aircraft systems
  • data cleansing and format correction suggestions for related data files
  • identification of the types of analytics possible on the available/selected parameters and considering both past incidents and future probabilities
  • and execution of analytic queries/algorithms on the selected parameters and display trends in both graphical and textual formats, where applicable. 

At UWE Bristol, the research at the Computer Science Research Centre (CSRC) addresses a wide range of topics relating the implementation in industry of novel and emerging technologies, eg data science, IoT, big data analytics, artificial intelligence etc.

The project will be carried out in close collaboration with the Airbus’s UK Data Analytics Plateau team (Filton, Bristol site).  This is a multi-functional team that aims to bring value through data analytics across all UK departments. This includes Aircraft Operability and Airworthiness, Flight and Systems Test, Aircraft Systems and Structures, Landing Gear and Flight Physics. 

Specific Eligibility Criteria for applicants

Computer science and mathematics background with experience in:

  • Python, SQL, Javascript, HTML, CSS
  • distributed databases and big data analytics (Spark)
  • time-series sampled data analysis and discrete time event analysis
  • signal processing techniques
  • data analytics and coding (Python, Spark, pandas, familiarity with data cleaning and wrangling processes)
  • machine learning, AI, neural network and deep learning
  • algorithm and processing complexity analysis and optimisation.

Knowledge of:

  • natural language processing
  • HMI/GUI design and ergonomics principles
  • cloud computing, and a general understanding of how to architect digital solutions that efficiently exploit cloud computing.

For an informal discussion about the studentship, please contact Dr Kamran Munir Kamran2.Munir@uwe.ac.uk.

Funding details

The studentship is available from 1 January 2020 for a period of three years, subject to satisfactory progress, and includes a tax-exempt stipend which is currently £15,009 per annum. In addition, full-time tuition fees will be covered for up to three years at Home/EU rates.

Eligibility criteria

Applicants must have a good honours degree (2:1 or equivalent) in Computer Science or a closely related discipline, with a research interest in the areas of security, privacy, cryptographic techniques, data analytics, and machine learning.

Previous experience in industry and working in a team to deliver objectives will be a plus.

UK/EU applicants only are eligible for this studentship. Application from outside UK/EU will only be considered is the student is willing to cover/self-fund the difference between UK/EU and international fee.

A recognised English language qualification is required.

How to apply

Please submit your application online. When prompted, use the reference number 1920-OCT-FET07.

Supporting documentation: you will need to upload your research proposal, all your degree certificates and transcripts and your proof of English language proficiency as attachments to your application so please have these available when you complete the application form.

References: you will need to provide details of two referees as part of your application. At least one referee must be an academic referee from the institution that conferred your highest degree. Please ensure that your nominated referees are willing and able to provide references before you submit your application.

Closing date

The closing date for applications is 1 November 2019.

Further information

Interviews will take place two weeks after the application deadline.  If you have not heard from us by 1 December 2019, we thank you for your application but on this occasion you have not been successful.

Back to top